Technology

The world’s most advanced aircraft

Composite materials technology means flying further, faster and in more comfort.

03 January 2012

In 1777, a young Joseph Montgolfier observed laundry drying over a fire. That simple observation, of hot air billowing into shirts, was the source code that would lead to modern aviation.

Five years later, the Montgolfier brothers launched their globe aérostatique (a hot air balloon) from Paris’ western fringe. The balloon climbed over 900 vertical metres and flew for 25 minutes, covering a distance of nine kilometres, before landing between windmills on a hill. The fire on board released embers that occasionally floated upward, setting the balloon material on fire (wet sponges were used to prevent the fabric from burning.) Eventually the pilot removed his coat to beat down the flames. One year passed. Then a hydrogen balloon was piloted for two and a half hours across the English Channel by the American Dr John Jeffries and a French colleague. More than a century went by, however, before a heavier-than-air craft (powered, and controlled) took flight in Kitty Hawk, USA. Just 66 years later, Neil Armstrong, who grew up a short distance from Kitty Hawk, and had his flying licence before his driving licence, flew to the moon for a two-and-a-half-hour walk. Since the moon landings, aviation has evolved at breakneck speed, but despite the sophistication of modern aircraft design, the public attitude towards intercontinental air travel has become facile. Advances in aviation are mostly due to improving materials technology built over the platform of super-energetic fuels.

ITWeb Premium

Get 3 months of unlimited access
No credit card. No obligation.

Already a subscriber Log in